If it's not what You are looking for type in the equation solver your own equation and let us solve it.
3x^2-6x-252=0
a = 3; b = -6; c = -252;
Δ = b2-4ac
Δ = -62-4·3·(-252)
Δ = 3060
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{3060}=\sqrt{36*85}=\sqrt{36}*\sqrt{85}=6\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-6)-6\sqrt{85}}{2*3}=\frac{6-6\sqrt{85}}{6} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-6)+6\sqrt{85}}{2*3}=\frac{6+6\sqrt{85}}{6} $
| x/5=2.1 | | 11=s2 | | 4/5(a+5)=60 | | 3x+5=7.25 | | u÷8=1 | | 8+7/8x=6+1/5x | | 10(4r+9)=65r-10+2-15r | | 5=d8 | | 10-7.2=x | | 84-x=179 | | 15x-7x=20+4 | | 12x+1=42x | | (x+14)=(3x-54) | | (x+3)2+7=23 | | 15-2(1-y)=2y-1 | | 6n+4-3n=16 | | 120°=6y° | | -1-6(5q-2)=-139 | | 1+8n+7n=16 | | 120°=6y | | 3x^2+6x-252=0 | | -2(2.5x+8)=26* | | 2−8/−3x=11 | | 7y-11=139 | | 5x=25+100 | | 1.6=0.2n+2.4 | | –6f=–4f+6 | | 80=3x+5) | | 5a-1+a=12 | | 5x-x+4x=9 | | F(2)=3x^2-15 | | 3(4v-5.)=-51 |